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Abstract— The cognitive communications project has been 
working to refine artificial intelligence and machine learning 
approaches to support their deployment and sustained use in 
space environments.  It has historically been difficult to 
implement such techniques on space platforms, however, due to 
the computational requirements they levy onto general-purpose 
avionics hardware.  While technologies exist to accelerate the 
computation of aspects of neural networks, such platforms have 
not historically been deployed in space environments.  Given 
that testing payloads in such environments can be both cost- and 
time-prohibitive, high-altitude balloons can be used as a way to 
approximate a space environment at a much lower cost, thus 
providing a cost-effective way in which to test newer approaches 
to hardware acceleration for artificial intelligence which may be 
deployed onto spacecraft more directly. 

This paper describes a successful test of a commercial off-
the-shelf neural network accelerator on a high-altitude balloon.  
It begins by explaining our selection criteria when evaluating 
different commercial neural network acceleration techniques: 
primary considerations include size, weight, and power (SWaP) 
as well as ease of integration.  Next, the paper describes the 
development and implementation of an experimental flight test 
platform: flight and ground components are discussed.  
Afterward, the paper discusses the experimental payload itself: 
this includes the experimental procedure as well as the specific 
image and method used for testing.  Finally, the paper concludes 
with an evaluation of both the experimental device tested at 
altitude as well as the flight test framework itself, identifying 
how the existing platform can be used to continue testing 
commercial off-the-shelf (COTS) solutions for acceleration. 

Keywords—artificial intelligence, embedded systems, system 
verification 

I. INTRODUCTION 
One commonly cited source of the “Internet of Things” 

(IoT) states that it began as the title of a presentation that was 
intended to link radio-frequency identification technology 
with the internet at large [1].  Since then, the phrase has 
evolved into a larger phrase that describes the connectivity 
between an ever-growing number of distributed sensors, 
instruments, and embedded devices.  While each individual 
device tends to be low-power, there are a number of 
approaches that allow such devices to capitalize on more 
powerful aspects of the networks they are connected to. 

Data offload to the cloud offers one approach to 
augmenting the capabilities available to power- and compute-
constrained IoT devices:  there has been a substantial amount 
of work in developing cellular (and other) approaches to 
communications that have been tuned for IoT applications.  
These approaches focus on allowing sensors to offload their 
data to specialized services running, for example, on the 
Amazon Web Services, Microsoft Azure, or other internet-
based platforms.  Such platforms often provide aggregation 
and analysis services, which are then capable of applying 
increased amounts of compute power in a datacenter toward 
analyzing, repackaging, and presenting data to users.  The 
only requirement this levies onto the IoT device is an 
expectation of connectivity: that it will be able to offload its 
data for this processing to take place.  This approach shares a 
number of common characteristics with the way science data 
is processed by spacecraft today. 

A. Space Assets as IoT Devices 
Space assets often act as extremely expensive wrappers for 

an (also expensive) instrument.  Fundamentally, the intent of 
the architectural approach to space research is similar to the 
architecture often observed in common IoT applications: find 
a way for the data gathered by an instrument on a device to 
reach the people (e.g. scientists and engineers) who are 
interested in reviewing it.  Spacecraft, like most IoT devices, 
tend to be constrained in terms of their size, weight, and 
power: when designing a space mission to last for years, every 
milliwatt counts.  While it may be easier to replace a node 
taking measurements in a forest than it is to replace a node 
taking measurements in space, in neither case does one want 
to venture out to replace a battery more often than is absolutely 
necessary.  

 
Figure 1 - Sensor Networks in Space vs. Sensor Networks on Earth 
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Generally, this means that compute and RF capabilities are 
planned extremely carefully for flight systems.  In most 
instances, the model adopted by the mission resembles that of 
the model adopted by modern IoT cloud applications: virtually 
no processing happens on the spacecraft, and the supporting 
systems on the spacecraft are simply intermediary systems to 
support buffering data and returning it to the ground.  This 
approach is a straightforward one, but does present some 
difficulties not commonly associated with IoT devices. 

B. Constraints on Spacecraft Communications 
Traditional space networks operate more like circuit-

switched phone systems than like packet-switched terrestrial 
networks.  There are a number of reasons for this, but many of 
them trace back to the physical mechanics involved with 
closing and maintaining an RF link.  Satellites in non-
geostationary orbits move into and out of range of ground 
stations relatively quickly, leading to dynamic link 
characteristics that can vary wildly between successive passes.  
Further, ground stations are normally tuned to optimize for 
maximal gain, leading to highly directional RF systems that 
can speak with a relatively limited number of assets in parallel.  
Additionally, such high-gain equipment is relatively 
expensive to operate and maintain: even if the capital expense 
of building a new ground station can be supported at a given 
moment in time, the operational expenses represent a long-
term infrastructure commitment.  Thus, communication with 
the ground can often require a nontrivial degree of human 
intervention to complete and maintain. 

 
Figure 2 – Intermittent Contact with Networked Ground Stations 

The orbital mechanics can be simplified (to an extent) 
through the use of assets such as geosynchronous relay 
satellites.  Unfortunately, while geosynchronous relay 
spacecraft can be an option for larger missions, they are 
generally a challenge for smaller missions to effectively 
utilize.  A satellite in geosynchronous orbit is over 22,000 
miles above mean sea level, whereas satellites in low-Earth 
orbit are generally less than 1,250 miles above the surface: as 
such, it requires substantially more power to close a link with 
a relay satellite than it does to close an equivalent link directly 
with a station on the ground.  Addressing the power and 
thermal considerations necessary to facilitate the use of a 

geosynchronous relay at a nontrivial bit rate normally 
promotes a spacecraft out of the “small” category. 

C. Toward Computing at the Edge … of Space 
While there are relatively hard physical limitations on RF 

links between spacecraft, limitations on compute aspects of 
modern spacecraft design are somewhat more fluid.  
Innovations in architecture and manufacturing process allow 
modern CPUs to iteratively improve on processing 
capabilities without affecting the resulting size or weight of 
the processing package.  Further, various advances in 
hardware acceleration for specific algorithms and approaches 
(e.g. neuromorphic processors) can offer savings when 
compared to general-purpose CPUs that would otherwise be 
necessary to accomplish an equivalent task [4, 13]. 

These improvements have led to a marked interest in the 
idea of running nontrivial compute tasks directly on spacecraft 
before data passes through the link.  This interest mirrors, for 
example, the interest in “edge computing” (or, more recently, 
“fog computing”) on terrestrial IoT systems [2].  More 
efficient and powerful CPUs have facilitated more powerful 
processing capabilities on individual IoT systems.  By running 
such processing tasks before the data leaves a system (be it 
space or terrestrial), one can significantly reduce the data 
requirements for a system while simultaneously improving 
e.g. the speed at which a system can analyze and react to a 
dynamic environment. 

D. Technology Readiness and the High Altitude Balloon 
While the idea of edge computing sounds attractive in 

theory, mission designers tend to be extremely hesitant to 
adopt unnecessary risk in systems which are not required for 
a successful mission.  This leads to something of a proverbial 
chicken-and-egg problem with implementing new 
technologies in missions: a technology cannot be proven if it 
does not fly, but no one wants to assume the risk inherent to 
flying an unproven technology.  While missions are 
commissioned entirely to demonstrate unproven 
communication technologies, such missions are themselves 
somewhat rare and carefully structured in terms of their 
lifetime and the types of experiments they can support.  
Further, in order to be considered for such a mission, a 
technology must reach an acceptable level of development.  
To better characterize the stage of development for a specific 
technology, NASA adopts what it refers to as a technology 
readiness level (TRL).  The TRL scale generally ranges from 
1 to 9, with 1 being a largely abstract idea, 5 being something 
that has been prototyped on a breadboard / emulated 
environment, and 9 being something that is battle-tested and 
has flight heritage [14].  There are requirements for a 
technology to progress through the various stages of 
development, one of which involves applied demonstrations 
in flight-like situations. 

A high-altitude balloon (HAB) experiment presents one 
way to take a technology at a lower TRL and demonstrate that 
it can operate in space-like conditions for a specific period of 
time.  HAB missions are especially attractive in many cases 
because they are cost-effective and simple: one can combine 
a parachute, a small foam container, and a weather balloon, 
and find themselves with a functional way to validate 
successful operation of an experimental payload at altitudes of 
25 - 30 km above sea level, an altitude at which it will be 
above 99% of the Earth’s atmosphere, for a cost of $1,000 
USD or less.  While the conditions found at 25 – 30 km are 



not identical to those commonly found in low-earth orbit, 
many challenges are similar: at such high altitudes, for 
example, convection cooling is less effective.  The ambient air 
temperature is also low enough that devices can begin to 
operate incorrectly, and various aspects of design (e.g. battery 
capacity [6]) need to be adjusted to suit the environment. 

II. EXPERIMENTAL DESIGN 

A. Experiment Overview 
For reasons described above, we elected to use a HAB to 

demonstrate the operation of a commercial off-the-shelf 
(COTS) neural network accelerator in space-like conditions.  
The intent of this experiment was to elevate the TRL of the 
concept of on-board processing in the abstract.  Since this was 
an early experiment in this area, and the experiment was 
intended to be largely student-led, we elected to focus on three 
high-level objectives for our experiment: simplicity, low size, 
weight, and power (SWaP), and hardware neural network 
support.  We also were incidentally constrained by cost and 
availability of parts. 

Simplicity was a must because there were only 10 weeks 
in which to construct, test, validate, fly, and retrieve an 
experimental payload. No mechanical components of the 
balloon were specifically constructed for flight: the payload 
was contained in a simple polystyrene box.  Generally, 
components were over-provisioned and relied on Arduino-
compatible libraries to ease the software development process.  
The neural network accelerator was similarly envisioned as 
something that would be straightforward for students to work 
with. 

Minimal SWaP was an objective for many reasons, each 
of them important to the success of the intended flight.  First, 
minimal SWaP was desired because flight assets are 
necessarily limited in the amount of size, weight, and power 
available to them.  With this in mind, the lower the cost of the 
computational and communication elements, the more space 
might be available for science on the asset.  Secondly, to ease 
the validation process, the payload was constructed to be 
sufficiently lightweight that it would not fall within the 
applicability parameters of 14 C.F.R. §101.1.  Specifically, 
these regulations placed a hard limit of four pounds (1.8 kg) 
on the project. 

Hardware neural network acceleration support was a 
requirement because it was a core aspect of our envisioned 
edge compute platform.  While neural networks have been 
implemented on small microcontrollers in the past [3], such 
platforms place severe constraints on the format, size, and 
function of such networks.  Newer hardware acceleration 
platforms, on the other hand, allow massive neural networks 
to operate in the same SWaP envelope as that of a 
microcontroller: IBM’s TrueNorth platform offers 1 million 
neurons and 256 million synapses at 65 mW of power 
consumption [4].  Field Programmable Gate Arrays (FPGAs) 
are another alternative for acceleration of specific types of 
neural network compute workloads: while their performance 
per watt does not tend to reach the same levels of that found 
within dedicated ASICs [5], they do still represent an 
improvement over that of implementations based entirely 
within general-purpose CPUs. 

Finally, our experiment had a budget of approximately 
$300 USD for parts and expenses.  This amount included only 
parts that we intended to purchase for the experiment: many 

elements were recycled from similar applied projects and low-
cost experiments that had been run in the past.  Thus, when 
considering purchases, we first considered whether the parts 
we had available already would be adequate to perform the 
intended task. 

With those objectives in mind, we proceeded to the design 
phase of the project.  After some consideration, the design was 
split into two major subsystems: an infrastructure subsystem 
and an experiment subsystem. The infrastructure piece 
supported e.g. power distribution and real-time 
communication with the ground, while the experiment piece 
consisted of a neural network accelerator (as well as any 
supporting hardware / software that might accompany it).  
While not covered here in depth, the infrastructure element 
also had a requirement to interface with a secondary payload 
that also resided upon the same physical balloon. 

B. Communications Infrastructure 
The infrastructure of the balloon included four distinct 

parts: the power system, a microcontroller, a radio, and 
various flight-related recording instruments.  Each of these 
elements will be covered separately in the following sections.  
Note that a graphical overview of the balloon’s wiring and 
systems may be observed in Figure 3 (below). 

 
Figure 3 - Infrastructure Overview 

1) Microcontroller 
When identifying a microcontroller, there was a desire to 

obtain a chip that included support for a wide variety of low-
speed serial inputs and outputs.  The chip was also intended to 
be simple to program and work with, lightweight, and power 
efficient, while simultaneously offering sufficient resources 
that relatively little time would need to be spent on e.g. 
ensuring code could fit into available flash and RAM on the 
device.  A number of development boards were evaluated for 
this purpose.   

The Arduino UNO was the first such device: it was 
attractive due to its widespread adoption and simple 
programming interface, but was ultimately unable to be used 
here due to the low number of UARTs available on the part.  
There was a requirement to support four simultaneous UARTs 
on the balloon, but the Arduino has hardware support for only 
one.  We were not confident in this device’s ability to emulate 
three other UARTs in software while simultaneously 
interacting with other instruments over I2C and logging data 
to an SD card – this may have been within the realm of 
possibility, but would have required some degree of 
optimization and careful implementation to realize given the 
resources available. 

The second and third options considered were ARM 
Cortex M4 devices from STM32.  These parts supported more 



I/O than the Arduino and had reasonable power requirements, 
but were more complex to program: rather than relying on the 
well-known Arduino set of functions, the STM32 
development boards exposed the function of the chips and 
devices directly.  This ensured they would remain an option, 
but something Arduino-compatible was preferred.   

One such board (and the final candidate evaluated here) 
was the Teensy 3.6 development board.  This board included 
an ARM Cortex M4 processor (nominally clocked at 180 
MHz), but offered drop-in compatibility with the Arduino 
programming toolchains and approach.  It included a number 
of I/O capabilities, and also included software and hardware 
support for SD cards directly on the board: this removed the 
need to interface with an external device to obtain support for 
e.g. logging instrument data to SD cards during flight.  For 
these reasons, the Teensy 3.6 was selected. 

2) Radio System 
The radio system, in this instance, was constructed from a 

pair of radios that operated within the unlicensed 902 – 928 
MHz band.  These radios were selected primarily because they 
had been used in previous experiments with some degree of 
success, so the acquisition of a new system would not be 
needed.  With that said, the radios used for this project could 
internally support transmission at up to 30 dBm, and were 
reportedly able to support a 10 Kbps link down to -110 dBm.  
Thus, the radio system provided a maximum link budget of 
140 dB.  Given that the balloon was expected to reach an 
altitude of 25 – 30 km, calculations indicated that a link would 
remain available through much of the flight and that there 
would be a reasonable degree of margin to account for 
interference and miscellaneous losses (e.g. antenna 
polarization mismatch, impedance mismatch, and multi-path 
losses). 

Generally speaking, the radio’s high supported 
transmission power meant that it was the device that drew the 
most power.  From the associated user manual for the device, 
transmission at 30 dBm was expected to draw 710 mA at 5V 
(or 3.6W).  As a result, the duty cycle for the radio was 
minimized to avoid issues with overheating and to maximize 
the life of the battery. 

3) Power System  
For systems that operate at high altitudes and low 

temperatures, environmental conditions can have a negative 
impact on battery life and performance [6, 7].  When the 
power system was designed, it was built with an objective to 
support roughly 9 hours of continuous operation: this 
accounted for a flight of a few hours, followed by a retrieval 
process that might take longer to complete.  Communication 
with the balloon can be useful during the retrieval process, so 
the battery was over-provisioned to support such a use-case. 

In this case, the battery selected was a 5V, 10,000 mAh 
lithium-ion device designed to deliver power exclusively 
through a pair of USB ports.  These USB ports presented a 
convenient way to power most common system-on-chip 
devices without necessitating direct wiring.  For common 
chipsets and boards (e.g. the Raspberry Pi Zero), this removed 
the need to bring power to header pins directly, reducing the 
chances that e.g. a mis-wired connection would damage a 
component.   For cases where more direct power was required, 
this was accomplished by breaking one USB port out into a 
5V rail and a ground rail on a power distribution board. 

The power distribution board was a small breadboard that 
offered a 5V rail, a ground rail, a 3.3V rail, and voltage level 
translation.  For simplicity’s sake, the system diagram has 
been simplified to not route the level translation and 3.3V 
through the distribution board: this does not sacrifice accuracy 
because the 3.3V rail involved was sourced from the 
microcontroller, and because the level translation was not tied 
to any specific rail. 

4) Instruments 
Data gathering and recording was performed by 

independent sensors included on the balloon. An inertial 
measurement unit was used to observe the orientation and 
movement of the payload during flight.  These measurements 
were recorded with the intent to understand the kind of 
stresses that were observed during the flight.  Additionally, the 
IMU data was expected to offer insight with respect to how 
the antenna moved during flight.  

A GPS module was used to track latitude, longitude, and 
altitude of the balloon.  Data retrieved from this module was 
included in telemetry frames and downlinked from the flight 
system on a regular basis.  These frames were fed into a real-
time recording and data visualization system on the ground, 
which in turn allowed the balloon to be tracked in real-time 
throughout its flight. 

5) Software and Ground Infrastructure 
The software development effort was split into two distinct 

pieces: ground and flight.  The flight software was written in 
the C++ programming language and relied on the Arduino 
library to support data communications. On flight, the intent 
was for the microcontroller to manage data gathering and 
manipulation, as well as push telemetry and payload data to 
the radio module for downlink.  The microcontroller also 
responded to link characterization messages that allowed the 
ground software to e.g. record message latency and to indicate 
the signal strength as measured on the ground. 

 
Figure 4 - Ground System 

The core of the ground software was written in C++.  The 
ground software was written to record and visualize 
information received from the balloon in real-time (e.g. GPS 
data, signal strength, ambient temperature, ambient pressure, 
etc).  Data received on the ground was fed into an indexing 
backend called ElasticSearch, and visualized through a web 
browser: the visualization was constructed through a software 
package called Kibana. 



All ground software was run on a Raspberry Pi 3 system 
(pictured in Figure 4 above).  This system was configured to 
operate as an 802.11 access point: to view data from the 
balloon flight, one would first join the 802.11 network, and 
then access the web interface running on that access point 
directly.  Relevant flight data was also displayed directly on a 
small LCD.  This configuration allowed multiple users to view 
flight data as the experiment progressed.  Communication 
with the radio system was supported through a standard USB 
to RS-232 adapter. 

C. Experimental Payload 
Once the infrastructure had been designed and largely 

implemented, candidate neural network acceleration devices 
were identified.  Solutions evaluated included those based on 
FPGAs as well as solutions based on low-cost hardware.  Note 
that this trade was not intended to act as an exhaustive 
exploration of the space: instead, it was to select a device that 
was approachable enough and simple enough that an 
experiment could be designed and implemented within the 
time available to students in which to work. 

1) Neural Network Acceleration Approaches 
Generally, approaches to accelerating neural networks fall 

into a few different categories.  The first category is that of 
GPU-accelerated computing, which relies on the massively 
parallel nature of modern graphics cards to accelerate the 
computations associated with both training and executing 
neural networks.  GPU acceleration is an attractive general-
purpose solution, and is not limited to execution on larger 
platforms: the Jetson TX2 platform, for example, supports 256 
CUDA cores within a power envelope of 15W [9]. 

Another broad category describes FPGA-based 
approaches to acceleration.  There are generally multiple ways 
to leverage FPGAs to accelerate such computation: one 
approach is to utilize the FPGA as an OpenCL target and 
develop kernels for that directly [10].  In this manner, the 
FPGA acts in a manner similar to that of a GPU, where it 
accelerates specific aspects of general neural network 
computation.  A second, more specialized approach to FPGA-
based neural network acceleration involves building neural 
networks that map to the FPGA architecture more directly 
[11].  This has the advantage of offering substantial 
improvements to performance, but one disadvantage is that 
different approaches to such acceleration often necessitate 
specific interfaces.  Such approaches also necessarily limit the 
use of an FPGA to the specific type of problem for which an 
optimized solution has been devised. 

A third category involves the use of more specialized 
hardware ASICs to support accelerated computation.  Such 
ASICs can range from specialized arrays of vector processors 
that target specific applications (such as image processing) 
[12] to more architecturally unique approaches that support 
generalized neural network implementations [4, 13]. 

2) Evaluating Acceleration Options 
Given the dizzying array of solutions supported, some 

initial selections were made to limit the scope of the 
evaluation.  First, more esoteric solutions based on unique 
hardware were eliminated: given that there were cost 
constraints placed on the balloon and that access to such 
hardware tends to be somewhat limited, it was not deemed to 
be a practicable approach to acceleration.  Further, such 
hardware normally necessitates the acquisition of specialized 
toolchains to effectively support development, requiring some 

time to be invested in a specific solution before any gains 
could be realized. 

Next, the field of candidate devices was again reduced in 
scope to focus on devices that supported the well-known 
TensorFlow and PyTorch libraries.  These libraries accelerate 
the development and utilization of approaches to artificial 
intelligence.  Use of these libraries would avoid specific one-
off solutions that, while efficient, would very likely be outside 
the realm of feasible implementation given the resources and 
timeframe available for development.  It would also allow 
students to rapidly test and experiment with a number of 
existing Artificial Intelligence (AI) and Machine Learning 
(ML) approaches that had already been developed based on 
these frameworks, which was perceived as a win. 

The field was narrowed further based on an evaluation of 
the backgrounds of the individuals performing the experiment.  
The team involved had limited FPGA experience and, given 
the compressed timeframe of the experiment, also had limited 
time available to them in which to learn.  As such, while 
FPGAs should be evaluated more closely in the future, they 
were not deemed to be a good fit for the purposes of this 
particular experiment. 

The Jetson TX2 was also removed from consideration. 
One factor that influenced this decision was the relative power 
cost: while the power utilization can run around 7.5W in 
specific modes, the power utilization was still significantly 
larger than that of other devices on the balloon.  More 
important, however, was that there was no guarantee the 
balloon would be recovered.  Thus, while the $599 MSRP for 
this board meant that it would be replaceable, it would not a 
device that would be comfortable to lose.  Since the 
experiment was more about demonstrating the concept than 
about pushing the boundaries of embedded computation, it 
was determined that another device might be better suited to 
demonstrate this concept in the abstract. 

 
Figure 5 – Flight Infrastructure / Payload Assembly 

After further deliberation, candidates were down-selected 
to a pair of acceleration devices that were both based on the 
Movidius Myriad 2 chip.  The Movidius Myriad 2 



incorporates an array of 12 128-bit SIMD vector processors 
(clocked at 600 MHz), onboard memory and an associated 
memory fabric, hardware accelerators for specific image 
transformation and processing tasks, and a lightweight RISC 
processor [12].  Documentation for the Myriad 2 chipset lists 
power consumption as less than 500 mW in most cases.  The 
device allows the user to export certain networks from 
TensorFlow and Caffe and execute them directly on the chip, 
removing the need for the general-purpose processor (in the 
case of the Raspberry Pi Zero, the single 1 GHz BCM2835) to 
perform those tasks. 

One of the candidate devices was a Neural Compute Stick: 
this is a USB stick that incorporates the chip, and can be 
plugged into many devices for use.  The other was a chip (the 
MA2450) that had been integrated into an extension board 
(called a “hat”) for a Raspberry Pi Zero.  A complete kit 
(called a Google AIY Vision Kit, consisting of a camera, 
Raspberry Pi Zero, SD card, cardboard assembly, and hat) was 
available for $89.99 MSRP.  The kit also included a ready-
made environment (on the SD card) that came with a series of 
example applications that could demonstrate use of the 
MA2450 included on the hat. 

Overall, the platform appeared to draw an acceptable level 
of power given available battery constraints, was cheap 
enough that risk associated with its loss would be small, 
utilized minimal size and weight, and supported rapid design 
and development of experiments that would allow students to 
experiment with the chip.  As such, this was the device that 
was selected to be included in this experiment. 

III. EXPERIMENT, FLIGHT, AND RESULTS 

A. Experimental Design 
Once an appropriate hardware platform had been 

identified, the next question was how the platform could be 
used.  Upon conversation, it was determined that one useful 
application of a balloon would be to validate the device’s 
correct operation at altitude.  The intent was to provide the 
chip with a task that would be representative of an actual task 
it might perform.  Timing information and results associated 
with the execution of this task would be recorded throughout 
the flight, and those results would be evaluated upon 
successful recovery of the payload. 

For the purposes of identifying a representative workload, 
the students identified an image classification routine.  The 
students next identified an image that could be classified – the 
specific image analyzed will not be reproduced here to avoid 
any potential issues with copyright.  Once the image and 
routine had been identified, students constructed a script that 
would repeatedly classify the image.  The time taken to 
perform each individual classification was recorded, as were 
the results of the classification.  Classifications were repeated 
as quickly as the platform would allow. 

The experiment was first performed for an hour on the 
ground to baseline the expected results.  Results were 
reviewed to ensure that they were, in fact, deterministic when 
run repeatedly.  Reported values were also analyzed to 
determine how much time the routine was expected to take in 
normal circumstances.  Once this process had been completed, 
the device was added to the balloon and connected to the EPS 
in preparation for flight. 

B. Assembly and Flight Planning 
Glenn Research Center lies next to Cleveland-Hopkins 

International Airport.  As such, airspace at and around the 
center is restricted, and not well-suited to supporting a launch. 
The center’s proximity to the lake also made it very likely that, 
should approval to launch be gained, the resulting landing site 
would fall somewhere in Lake Erie.  As such, a launch site 
was selected at a location around 100 miles southwest of 
Cleveland.  Projections (based on weather conditions and 
balloon data) indicated that the balloon would travel roughly 
30 miles northeast – this put its anticipated flight path and 
landing site well outside of any restricted airspace.  
Projections additionally showed that the balloon would 
generally remain clear of any densely populated areas.  
Though not technically required, a notice to airmen 
(NOTAM) was filed in support of the launch. 

The final assembly included the communications 
infrastructure payload, the neural network experimental 
payload, a secondary experimental payload (not described in 
this paper), a GPS tracking device, and a small HD camera (to 
record the balloon’s flight).  Integration testing between the 
communications infrastructure and the secondary 
experimental payload occurred throughout the course of the 
development process. 

The balloon assembly consisted of a high-altitude weather 
balloon, a parachute, and the payload assembly itself.  During 
the launch, the balloon would steadily rise, and an ever-
growing difference in pressure would force the balloon to 
expand outward.  At a pre-determined altitude, the balloon 
would finally stretch beyond its breaking point and burst.  The 
payload would then begin to fall, and naturally deploy an 
attached parachute.  The payload and parachute were not 
steered: various models and tools were used to predict the 
flight path, but no aspect of the flight path was actively 
controlled during the flight. 

Final assembly of the balloon was completed on-site at the 
launch location.  Validation of the assembly occurred after 
both the communications and experimental payloads had been 
powered on – a final systems check was completed 
immediately before launch.  Once systems were verified, the 
balloon was released into the heavens. 

C. Balloon Flight 
1) Communication System Performance 
Initially, communication with the balloon was maintained 

through an antenna mounted to a 13-foot portable mast.  
Approximately 10 minutes into the flight, we switched our 
ground antenna to an omnidirectional antenna mounted to the 
roof of a vehicle, and began to follow the balloon’s recorded 
GPS locations and projected flight path as it moved 
northward.  A stable communications link was maintained 
through much of the balloon’s flight, allowing for real-time 
displays of metrics such as signal strength, pressure, and total 
data transmitted / received through the communications 
system on the balloon. 

2) Flight Metrics and Altitude Modeling 
One element that is critical to understanding the 

characteristics of a balloon’s flight is the way its altitude 
changes over time.  To support altitude tracking, the balloon 
included a pressure sensor.  This instrument recorded the 
ambient pressure (in Pascals) at a rate of one sample every ten 
seconds. 



 
Figure 6 - Balloon Altitude vs. Time 

After the flight had concluded, it was necessary to take this 
raw pressure data and convert it into altitude data.  To assist 
with this process, the National Oceanic and Atmospheric 
Administration (NOAA) publishes Global Forecast System 
(GFS) data on a regular basis.  This data includes radiosonde 
data, which maps a number of specific pressures to their 
corresponding geopotential height.  Note that, while 
geopotential height is generally not equivalent to geometric 
height, the two are treated as identical for the purposes of this 
discussion. 

To facilitate the conversion from pressure to altitude, 
specific data points (from July 31st, 2018) were retrieved for a 
nearby weather station.  A model was empirically derived and 
applied to this data set: 
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Equation 1 - Estimating altitude based on recorded pressure 

Given a pressure reading in Pascals, this model could be 
used to estimate the resulting height of the balloon in meters 
(to an accuracy of within 100m).  When this was applied to 
the pressure data points recorded during the flight, it became 
possible to compute the instantaneous altitude of the balloon.  
From these instantaneous altitude values, additional metrics 
could be calculated (such as the maximum altitude and ascent 
rate of the balloon).   

Based on the recorded pressure readings and the model 
described above, the balloon remained in the air for a little 
over two hours.  It ascended at a rate of 6 meters per second 
for 1.6 hours before reaching a peak altitude of 34.1 km 
(112,000 feet).  Once the balloon burst, the payload entered 
free fall for a moment before the parachute deployed and 
began to slow the payload’s descent. 

The payload’s landing location was identified within a few 
hours of landing, but recovering the payload took some 
additional time: the sun set before the recovery team arrived 
on site to retrieve the payload.  As such, payload recovery was 
successfully completed the following day. 

After review of the data, the payload’s 5V / 10,000 mAh 
battery (50 Wh) supported 15.5 hours of continuous operation.  
Assuming that all battery capacity was available for the 
payload to use (which is somewhat conservative), we can thus 
estimate the average power utilization of the communications 
and experimental neural network payload at less than or equal 
to 3.23 W.  The experimental configuration did not include a 

means to differentiate between the power utilization of the 
communications infrastructure and the experimental neural 
network payload itself – this is expected to be corrected in 
future revisions of the platform. 

 
Figure 7 - Image Recorded at High Altitude 

D. Experimental Results 
The neural network payload performed as expected 

throughout the duration of the flight.  Classification results did 
not change, and no errors were reported.  The classification 
task was completed close to 6,500 times over the course of the 
15.5 hours that the payload was active.  During the time the 
balloon was airborne, the classification task took an average 
of 8.615 seconds to execute.  The execution time did not 
follow any noticeable trend during the course of the flight. 

There was a substantial amount of noise observed in the 
general execution time.  To date, an exact source of this noise 
has not been determined.  However, given that there is only 
one processor available on the Raspberry Pi Zero, there could 
be some degree of noise introduced into the results as higher 
priority tasks are run in addition to the classification 
experiment run here.  Additionally, the Raspberry Pi Zero’s 
storage medium (a microSD card) is a shared resource: if the 
SD card were e.g. in use during times that image was being 
read or written, this could have acted as a substantial source 
of error with regard to the recorded runtime for individual 
executions.  

 
Figure 8 - Execution Time for Classification Task 

IV. CONCLUSIONS AND FUTURE WORK 

A. Experimental Conclusion 
Based on the results observed, it is our conclusion that both 

the Raspberry Pi Zero and the MA2450 worked as designed: 
there were no errors logged during executions, and the 
distribution of classification runtime remained consistent 



throughout the course of the 15.5 hours that the experimental 
payload remained powered on.   

Additionally, based on experience with the 
communications infrastructure during the flight, we 
determined that the radio and antennas used were sufficient to 
maintain a stable, bi-directional link with the payload 
throughout much of its flight. 

B. Future Efforts – Communications Infrastructure 
Much of the engineering effort that went into the 

construction of this experiment revolved less around the 
neural network itself, and more about the test harness (in this 
case, the supporting hardware and radio system that allowed 
for communication with the payload(s) under test).  However, 
the communications infrastructure developed in support of 
this experiment was intended to be reusable, such that it can 
be used in the future to significantly reduce the non-recurring 
investment required to build and fly a communications 
package for a high-altitude balloon. 

Further, the communications infrastructure itself offers an 
avenue for pursuing experiments in the future.  By exploiting 
the ability of neural networks to predict new values based on 
the way those networks have been trained, it should be 
possible to use the neural network chip tested here to optimize 
the performance of the communication system itself.  This 
could, for example, be realized through dynamic adjustments 
to the transmission power utilized by the balloon, or through 
decisions to transmit more or less frequently based on a 
number of parameters.  One example of such a parameter 
might be the amount of data currently awaiting downlink. 

C. Future Efforts – Neural Network Accelerator 
Moving forward, the neural network platform itself could 

be explored in more depth.  While CPU-based networks could 
be an option if properly optimized [8], it is expected that the 
emphasis would remain on hardware acceleration approaches 
to neural networks.  This idea could be realized by testing 
alternative platforms in similar HAB experiments (e.g. FPGA-
based approaches to AI) to validate their operation.  
Alternatively, there is further opportunity to take the neural 
network accelerator employed for this experiment and test it 
with arbitrary networks that have been constructed in toolkits 
such as PyTorch and TensorFlow.  Such networks could be 
applied to optimizing the communications system itself, as 
indicated earlier, or could be applied toward e.g. real-time 
vision processing of image and instrument data. 

D. Conclusion 
More generally, the authors hope that these results 

demonstrate a first step toward more widespread inclusion of 
AI-centric on-board processing capabilities in future space 
missions.  As such technology matures and finds its way into 
space, the opportunities for automation and autonomy it 
brings with it could not only streamline network and 
spacecraft operations, but more generally serve as a means to 
push the boundaries of exploration.   

In order for such a vision to ever be realized, however, 
experimentation and adoption of such technologies will be 
key.  It is our hope that this paper might offer an example of 
how HAB experiments can be used as a low-cost, simple 

means to demonstrate how specific technologies and concepts 
can be deployed and used in space-like conditions. 
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